PIN Diodes for RF Switching and Attenuating

Technical Data

Features
- Low Harmonic Distortion
- Large Dynamic Range
- Low Series Resistance
- Low Capacitance

Description/Applications
These general purpose switching diodes are intended for low power switching applications such as RF duplexers, antenna switching matrices, digital phase shifters, and time multiplex filters. The 5082-3188 is optimized for VHF/UHF bandswitching.

The RF resistance of a PIN diode is a function of the current flowing in the diode. These current controlled resistors are specified for use in control applications such as variable RF attenuators, automatic gain control circuits, RF modulators, electrically tuned filters, analog phase shifters, and RF limiters.

Outline 15 diodes are available on tape and reel. The tape and reel specification is patterned after RS-296-D.

Outline 15

Maximum Ratings
- Junction Operating and Storage Temperature Range: -65°C to +150°C
- Power Dissipation: 25°C: 250 mW (Derate linearly to zero at 150°C)
- Peak Inverse Voltage (PIV): same as V_{BR}
- Maximum Soldering Temperature: 260°C for 5 sec
Mechanical Specifications
The Agilent Outline 15 package has a glass hermetic seal with kemet leads. The lead finish is 95-5 tin-lead (SnPb) for all PIN diodes. The leads on the Outline 15 package should be restricted so that the bend starts at least 1/16 inch (1.6 mm) from the glass body. Typical package inductance and capacitance are 2.5 nH and 0.13 pF, respectively. Marking is by digital coding with a cathode band.

General Purpose Diodes
Electrical Specifications at $T_A = 25^\circ C$

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Max. Total Capacitance C_T (pF)</th>
<th>Min. Breakdown Voltage V_{BR} (V)</th>
<th>Max. Residual Series Resistance R_S (Ω)</th>
<th>Effective Carrier Lifetime τ (ns)</th>
<th>Reverse Recovery Time t_{rr} (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Purpose Switching and Attenuating</td>
</tr>
<tr>
<td>3001</td>
<td>0.25</td>
<td>200</td>
<td>1.0</td>
<td>100 (min.)</td>
<td>100 (typ.)</td>
</tr>
<tr>
<td>3039</td>
<td>0.25</td>
<td>150</td>
<td>1.25</td>
<td>100 (min.)</td>
<td>100 (typ.)</td>
</tr>
<tr>
<td>1N5719</td>
<td>0.3**</td>
<td>150</td>
<td>1.25</td>
<td>100 (min.)</td>
<td>100 (typ.)</td>
</tr>
<tr>
<td>3077</td>
<td>0.3</td>
<td>200</td>
<td>1.5</td>
<td>100 (min.)</td>
<td>100 (typ.)</td>
</tr>
<tr>
<td>Band Switching</td>
<td>Band Switching</td>
<td>Band Switching</td>
<td>Band Switching</td>
<td>Band Switching</td>
<td>Band Switching</td>
</tr>
<tr>
<td>3188</td>
<td>1.0*</td>
<td>35</td>
<td>0.6**</td>
<td>70 (typ.)*</td>
<td>12 (typ.)</td>
</tr>
<tr>
<td>Test Conditions</td>
<td>Test Conditions</td>
<td>Test Conditions</td>
<td>Test Conditions</td>
<td>Test Conditions</td>
<td>Test Conditions</td>
</tr>
<tr>
<td>$V_R = 50$ V</td>
<td>$V_R = 20$ V</td>
<td>$V_R = V_{BR}$ Measure</td>
<td>$I_F = 100$ mA</td>
<td>$I_F = 50$ mA</td>
<td>$I_F = 20$ mA</td>
</tr>
<tr>
<td>$I_R \leq 10$ µA</td>
<td>Measure</td>
<td>Measure</td>
<td>Measure</td>
<td>Measure</td>
<td>Measure</td>
</tr>
<tr>
<td>$f = 1$ MHz</td>
<td>$f = 1$ MHz</td>
<td>$f = 100$ MHz</td>
<td>$f = 100$ MHz</td>
<td>$f = 100$ MHz</td>
<td>$f = 90%$ Recovery</td>
</tr>
</tbody>
</table>

Notes:
Typical CW power switching capability for a shunt switch in a 50 Ω system is 2.5 W.

RF Current Controlled Resistor Diodes
Electrical Specifications at $T_A = 25^\circ C$

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5082-3080</td>
<td>1300 (typ.)</td>
<td>100</td>
<td>2.5</td>
<td>0.4</td>
<td>1000</td>
<td>8**</td>
<td>Batch Matched at $I_F = 0.01$ mA and $I_R = 1$ mA</td>
</tr>
<tr>
<td>1N5767*</td>
<td>1300 (typ.)</td>
<td>100</td>
<td>2.5</td>
<td>0.4</td>
<td>1000</td>
<td>8**</td>
<td></td>
</tr>
<tr>
<td>5082-3379</td>
<td>1300 (typ.)</td>
<td>50</td>
<td>3.5</td>
<td>0.4</td>
<td>1500</td>
<td>8**</td>
<td></td>
</tr>
<tr>
<td>5082-3081</td>
<td>2500 (typ.)</td>
<td>100</td>
<td>3.5</td>
<td>0.4</td>
<td>1500</td>
<td>8**</td>
<td></td>
</tr>
</tbody>
</table>

Test Conditions: $I_F = 50$ mA, $I_R = 250$ mA, $V_R = V_{BR}$, Measure $I_R \leq 10$ µA, $I_F = 100$ mA $f = 100$ MHz, $V_R = 50$ V $f = 1$ MHz, $I_F = 0.01$ mA $f = 100$ MHz, $I_F = 1$ mA $f = 100$ MHz.

*The 1N5767 has the additional specifications:

$\tau = 1.0$ msec minimum

$I_R = 1$ µA maximum at $V_R = 50$ V

$V_F = 1$ V maximum at $I_F = 100$ mA.
Typical Parameters at $T_A = 25^\circ C$ (unless otherwise noted)

Figure 1. Forward Current vs. Forward Voltage.

Figure 2. Typical RF Resistance vs. Forward Bias Current.

Figure 3. Typical RF Resistance vs. Forward Bias Current.

Figure 4. Typical Capacitance vs. Reverse Voltage.

Figure 5. Typical Capacitance vs. Reverse Voltage.

Figure 6. Typical Reverse Recovery Time vs. Forward Current for Various Reverse Driving Voltages.

Figure 7. Typical Second Order Intermodulation Distortion.

Figure 8. Typical Cross Intermodulation Distortion.
Diode Package Marking

1N5xxx 5082-xxxx
would be marked:
1Nxx xx
xxx xx
YWW YWW

where xxxx are the last four digits of the 1Nxxxx or the 5082-xxxx part number. Y is the last digit of the calendar year. WW is the work week of manufacture.

Examples of diodes manufactured during workweek 45 of 1999:
1N5712 5082-3080
would be marked:
1N5 30
712 80
945 945